MTH 201: Multivariable Calculus and Differential Equations

Problem Set 4: Green's, Stokes' and Gauss's Divergence Theorems

1 Properties of curl and divergence

1. If a scalar field $f(x, y, z)$ has continuous second partials, show that $\nabla \times \nabla f=0$.
2. Let F_{1} and F_{2} be differentiable vector fields and let a and b be arbitrary real constants. Veirfy the following identitites.
(a) $\nabla \cdot\left(a F_{1}+b F_{2}\right)=a \nabla \cdot F_{1}+b \nabla \cdot F_{2}$.
(b) $\nabla \times\left(a F_{1}+b F_{2}\right)=a\left(\nabla \times F_{1}\right)+b\left(\nabla \times F_{2}\right)$.
(c) $\nabla \cdot\left(F_{1} \times F_{2}\right)=F_{2} \cdot\left(\nabla \times F_{1}\right)-F_{1} \cdot\left(\nabla \times F_{2}\right)$.

Let F be a differentiable vector field and let $g(x, y, z)$ be a differentiable scalar field. Verify the following identities.
(a) $\nabla \cdot(g F)=g \nabla \cdot F+\nabla g \cdot F$
(b) $\nabla \times(g F)=g \nabla \times F+\nabla g \times F$.

2 Green's Theorem

1. Use Green's Theorem to find the counteclockwise circulation and outward flux of the field F over C.
(a) $F=\left(x^{2}+4 y\right) i+\left(x+y^{2}\right) j$
C : The square bounded by $x=0, x=1, y=0, y=1$.
(b) $F=(x+y) i-\left(x^{2}+y^{2}\right) j$
C : The triangle bounded by $y=0, x=1$, and $y=x$.
(c) $F=\left(\tan ^{-1} \frac{y}{x}\right) i+\ln \left(x^{2}+y^{2}\right) j$
C : The boundary of the region defined by the polar coordinate inequalities $1 \leq r \leq 2$, $0 \leq \theta \leq \pi$.
(d) $F=x y i+y^{2} j$
C : The boundary of the region enclosed by the curves $y=x^{2}$ and $y=x$ in the first quadrant.
2. Apply Green's Theorem to evaluate the following integrals.
(a) $\begin{gathered}\int_{C} y^{2} d x+x^{2} d y \\ C \text { : The triangle }\end{gathered}$
(b) $\int_{c}(6 y+x) d x+(y+2 x) d y$
C : The circle $(x-2)^{2}+(y-3)^{2}=4$.
3. If a simple closed curve C in the plane and the region R it encloses satisfy the hypthoses of the Green's Theorem, then show that the area of R is given by

$$
\frac{1}{2} \int_{C} x d y-y d x
$$

4. Use the formula derived in the problem 3 to find the area of the region enclosed by C.
(a) $r(t)=(a \cos t) i+(b \sin t) j, t \in[0,2 \pi]$.
(b) $r(t)=\left(\cos ^{3} t\right) i+\left(\sin ^{3} t\right) j, t \in[0,2 \pi]$.

3 Stokes' Theorem

1. Use Stokes' Theorem to calculate the circulation of the field F around the curve C in the indicated direction.
(a) $F=x^{2} i+2 x j+z^{2} k$
C : The ellipse $4 x^{2}+y^{2}=4$ in the $x y$-plane, counterclockwise when viewed from above.
(b) $F=\left(y^{2}+z^{2}\right) i+\left(x^{2}+z^{2}\right) j+\left(x^{2}+y^{2}\right) k$
C : The boundary of the traingle cut from the plane $x+y+z=1$ by the first octant, counterclockwise when viewed from above.
(c) $F=x^{2} y^{3} i+j+z k$
C : The intersection of the cylinder $x^{2}+y^{2}=4$ and the hemisphere $x^{2}+y^{2}+z^{2}=16$, $z \geq 0$, counterclockwise when viewed from above.
2. Use Stokes' Theorem to calculate the flux of the curl of the field F across the surface S in the direction of the outward unit normal n, that is, $\iint_{S}(\nabla \times F) \cdot n d \sigma$.
(a) $F=y i$
S : The hemisphere $x^{2}+y^{2}+z^{2}=1, z \geq 0$.
(b) $F=y i+x j+\left(x^{2}+y^{4}\right)^{3 / 2} \sin e^{\sqrt{x y z}} k$
S : The elliptical shell $4 x^{2}+9 y^{2}+36 z^{2}=36, z \geq 0$.
(c) $F=-y i+x j+x^{2} k$
S : The cylinder $x^{2}+y^{2}=a^{2}, z \in[0, h]$, together with its top, $x^{2}+y^{2} \leq a^{2}, z=h$.
(d) $F=(y-z) i+(z-x) j+(x+z) k$
$S: R(r, \theta)=(r \cos \theta) i+(r \sin \theta) j+\left(9-r^{2}\right) k, 0 \leq r \leq 3,0 \leq \theta \leq 2 \pi$.
(e) $F=x^{2} y i+2 y^{2} z j+3 z k$
$S: R(r \theta)=(r \cos \theta) i+(r \sin \theta) j+r k, 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi$.
(f) $F=y^{2} i+z^{2} j+x k$
$S: R(\phi, \theta)=(2 \sin \phi \cos \theta) i+(2 \sin \phi \sin \theta) j+(2 \cos \phi) k, 0 \leq \phi \leq \pi / 2,0 \leq \theta \leq 2 \pi$.

4 Gauss' Divergence Theorem

1. Use the Gauss' Divergence Theorem to find the outward flux of F across the boundary of the region D.
(a) $F=\sqrt{x^{2}+y^{2}+z^{2}}(x i+y j+z k)$
D : The spherical shell $1 \leq x^{2}+y^{2}+z^{2} \leq 4$.
(b) $F=x^{2}+x z j+3 z k$
D : The solid sphere $x^{2}+y^{2}+z^{2} \leq 4$.
(c) $F=x^{2} i+y^{2} j+z^{2} k$
D : The cube bounded by the planes $x= \pm 1, y= \pm 1$, and $z= \pm 1$.
(d) $F=(y-x) i+(z-y) j+(y-x) k$
D : The region cut from the solid cylinder $x^{2}+y^{2} \leq 4$ by the planes $z=0$ and $z=1$.
(e) $F=y i+x y j-z k$
D : The region inside the solid cylinder $x^{2}+y^{2} \leq 4$ between the plane $z=0$ and the paraboloid $z=x^{2}+y^{2}$.
(f) $F=2 x z i-x y j-z^{2} k$
D : The wedge cut from the first octant by the plane $y+z=4$ and the elliptical cylinder $4 x^{2}+y^{2}=16$.
