MTH 201: Multivariable Calculus and Differential Equations

Problem Set 4: Green's, Stokes' and Gauss's Divergence Theorems

1 Properties of curl and divergence

- 1. If a scalar field f(x, y, z) has continuous second partials, show that $\nabla \times \nabla f = 0$.
- 2. Let F_1 and F_2 be differentiable vector fields and let a and b be arbitrary real constants. Veirfy the following identities.
 - (a) $\nabla \cdot (aF_1 + bF_2) = a\nabla \cdot F_1 + b\nabla \cdot F_2.$
 - (b) $\nabla \times (aF_1 + bF_2) = a(\nabla \times F_1) + b(\nabla \times F_2).$
 - (c) $\nabla \cdot (F_1 \times F_2) = F_2 \cdot (\nabla \times F_1) F_1 \cdot (\nabla \times F_2).$

Let F be a differentiable vector field and let g(x, y, z) be a differentiable scalar field. Verify the following identities.

(a)
$$\nabla \cdot (gF) = g\nabla \cdot F + \nabla g \cdot F$$

(b) $\nabla \times (gF) = g\nabla \times F + \nabla g \times F$.

2 Green's Theorem

- 1. Use Green's Theorem to find the counteclockwise circulation and outward flux of the field F over C.
 - (a) $F = (x^2 + 4y)i + (x + y^2)j$ C: The square bounded by x = 0, x = 1, y = 0, y = 1.
 - (b) $F = (x + y)i (x^2 + y^2)j$ C: The triangle bounded by y = 0, x = 1, and y = x.
 - (c) $F = (\tan^{-1} \frac{y}{x}) i + \ln(x^2 + y^2) j$ C: The boundary of the region defined by the polar coordinate inequalities $1 \le r \le 2$, $0 \le \theta \le \pi$.
 - (d) $F = xyi + y^2j$ C: The boundary of the region enclosed by the curves $y = x^2$ and y = x in the first quadrant.
- 2. Apply Green's Theorem to evaluate the following integrals.
 - (a) $\int_{c} y^{2} dx + x^{2} dy$ *C*: The triangle bounded by x = 0, x + y = 1, y = 0.(b) $\int_{c} (6y + x) dx + (y + 2x) dy$ *C*: The circle $(x - 2)^{2} + (y - 3)^{2} = 4.$
- 3. If a simple closed curve C in the plane and the region R it encloses satisfy the hypthoses of the Green's Theorem, then show that the area of R is given by

$$\frac{1}{2}\int_C x\,dy - y\,dx.$$

- 4. Use the formula derived in the problem 3 to find the area of the region enclosed by C.
 - (a) $r(t) = (a \cos t)i + (b \sin t)j, t \in [0, 2\pi].$ (b) $r(t) = (\cos^3 t)i + (\sin^3 t)j, t \in [0, 2\pi].$

3 Stokes' Theorem

- 1. Use Stokes' Theorem to calculate the circulation of the field F around the curve C in the indicated direction.
 - (a) $F = x^2i + 2xj + z^2k$ C: The ellipse $4x^2 + y^2 = 4$ in the *xy*-plane, counterclockwise when viewed from above.
 - (b) $F = (y^2 + z^2)i + (x^2 + z^2)j + (x^2 + y^2)k$ C: The boundary of the traingle cut from the plane x + y + z = 1 by the first octant, counterclockwise when viewed from above.
 - (c) $F = x^2 y^3 i + j + zk$ C: The intersection of the cylinder $x^2 + y^2 = 4$ and the hemisphere $x^2 + y^2 + z^2 = 16$, $z \ge 0$, counterclockwise when viewed from above.
- 2. Use Stokes' Theorem to calculate the flux of the curl of the field F across the surface S in the direction of the outward unit normal n, that is, $\iint_{S} (\nabla \times F) \cdot n \, d\sigma$.
 - (a) F = yiS: The hemisphere $x^2 + y^2 + z^2 = 1, z \ge 0.$
 - (b) $F = yi + xj + (x^2 + y^4)^{3/2} \sin e^{\sqrt{xyz}} k$ S : The elliptical shell $4x^2 + 9y^2 + 36z^2 = 36, z \ge 0.$
 - (c) $F = -yi + xj + x^2k$ S: The cylinder $x^2 + y^2 = a^2$, $z \in [0, h]$, together with its top, $x^2 + y^2 \le a^2$, z = h.
 - (d) F = (y z)i + (z x)j + (x + z)k $S : R(r, \theta) = (r \cos \theta)i + (r \sin \theta)j + (9 - r^2)k, \ 0 \le r \le 3, \ 0 \le \theta \le 2\pi.$
 - (e) $F = x^2 y i + 2y^2 z j + 3zk$ $S : R(r\theta) = (r \cos \theta)i + (r \sin \theta)j + rk, \ 0 \le r \le 1, \ 0 \le \theta \le 2\pi.$
 - (f)
 $$\begin{split} F &= y^2 i + z^2 j + xk\\ S &: R(\phi,\theta) = (2\sin\phi\cos\theta)i + (2\sin\phi\sin\theta)j + (2\cos\phi)k, \ 0 \le \phi \le \pi/2, \ 0 \le \theta \le 2\pi. \end{split}$$

4 Gauss' Divergence Theorem

- 1. Use the Gauss' Divergence Theorem to find the outward flux of F across the boundary of the region D.
 - (a) $F = \sqrt{x^2 + y^2 + z^2}(xi + yj + zk)$ D: The spherical shell $1 \le x^2 + y^2 + z^2 \le 4$.
 - (b) $F = x^2 + xzj + 3zk$ D: The solid sphere $x^2 + y^2 + z^2 \le 4$.
 - (c) $F = x^2 i + y^2 j + z^2 k$ D: The cube bounded by the planes $x = \pm 1$, $y = \pm 1$, and $z = \pm 1$.

- (d) F = (y x)i + (z y)j + (y x)kD: The region cut from the solid cylinder $x^2 + y^2 \le 4$ by the planes z = 0 and z = 1.
- (e) F = yi + xyj zkD: The region inside the solid cylinder $x^2 + y^2 \le 4$ between the plane z = 0 and the paraboloid $z = x^2 + y^2$.
- (f) $F = 2xzi xyj z^2k$ D: The wedge cut from the first octant by the plane y + z = 4 and the elliptical cylinder $4x^2 + y^2 = 16$.